
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

ATI Stream Profiler: a Tool to Optimize an OpenCL Kernel on ATI Radeon GPUs

Budirijanto Purnomo∗ Norman Rubin† Michael Houston‡

Advanced Micro Devices, Inc.

Figure 1: ATI Stream Profiler is a run-time OpenCLTM profiler developed as a Microsoft R© Visual Studio 2008 plugin.

1 Introduction

Modern GPUs have been shown to be highly efficient machines for
data-parallel applications such as graphics, image, video process-
ing, or physical simulation applications. For example, a single ATI
RadeonTM HD 5870 GPU has a theoretical peak of 2.72 teraflops
(1012 floating-point operations per second) with a video memory
bandwidth of 153.6 GB/s. While it is not difficult to port CPU al-
gorithms to run on GPUs, it is extremely challenging to optimize
the algorithms to achieve teraflops performance on GPUs. Only
a select few expert engineers with the application domain exper-
tise, a deep understanding of the modern GPU architecture, and an
intimate knowledge of shader compiler optimization can program
GPUs close to their optimal capabilities. Many developers are con-
tent with several folds of improvements rather than one or several
orders of magnitude acceleration compared to their optimized CPU
implementations.

In this work, we share several important lessons we learned in the
process of developing ATI Stream Profiler (shown in Figure 1) for
OpenCLTM, an open standard tool for programming parallel appli-
cations on many-core architectures.

2 ATI Stream Profiler

The core functionality of ATI Stream Profiler is its ability to present
a minimal set of meaningful and relevant performance counters de-
rived from thousands of hardware raw signals supported by ATI
GPUs. We highlight several important lessons for optimizing
OpenCLTM kernel on ATI RadeonTM 5000 series GPUs.

2.1 ALU Optimization

One important measure of kernel performance is the effective rate
of floating-point computation (ALU) compared to the peak theoret-
ical rate of the GPU.

We show the utilization of the single-instruction multiple-data
(SIMD) units in these two performance counters: ALUBusy and
ALUPacking. The former is the rate of instruction processed by
the SIMD units and the latter is the utilization of the five-issue
architecture in the SIMD. Multiplying the values from these two
counters gives you the percentage of the SIMD utilization. For ex-
ample, 70% ALUBusy and 50% ALUPacking indicate the kernel is
performing at 35% of the peak theoretical rate. Low ALUBusy indi-
cates either not enough work is scheduled or ALU units are stalled

∗e-mail: Budirijanto.Purnomo@amd.com
†e-mail:Norman.Rubin@amd.com
‡e-mail:Michael.Houston@amd.com

due to data latency. To improve ALUPacking, developers can struc-
ture their codes to use more vector operations and/or reducing long
dependency computation chains.

2.2 Global Memory Optimization

Since most kernels are memory-bound, it is important to optimize
accesses to the global memory (video memory). We show the
amount of data fetched from the global memory (FetchMem) and
the amount of data written to the global memory (FastPath and
CompletePath). FastPath and CompletePath denote the two mem-
ory paths in the hardware for writing data. The former is an op-
timized hardware path but supports only simple operations. The
latter supports additional advanced operations including atomics
and sub-32-bit (byte/short) data transfers. In our experiments, we
observed an effective bandwidth of 20 GB/s for the CompletePath
compared to 100+ GB/s for the FastPath when moving a block of
data. Two reasons for the performance difference: (1) additional
atomics data transferred for the CompletePath, and (2) the maxi-
mum bus utilization between the shader unit and the memory unit
for the CompletePath is 25% compared to the 100% for the Fast-
Path. To improve performance, we suggest performing atomics as
partial reductions in the local memory and running a final kernel
pass to combine the results.

When working with the image objects, developers need to adapt the
access pattern to the data layout of the objects: tiled for the image
objects versus linear for the buffer objects. We show the percentage
of fetches that hit the L1 cache for the image objects (L1CacheHit).

2.3 Local Memory Optimization

You can also reduce the data transfer to the global memory by uti-
lizing the local memory (local data share, or LDS). This memory
unit has higher bandwidth (2 terabytes/s on the ATI RadeonTM HD
5870) but limited size (32 KB per SIMD) compared to global mem-
ory bandwidth and size.

To utilize the local memory efficiently, developers need to minimize
bank conflict accesses that will be processed serially by the units.
We show the impact of the bank conflicts in terms of time spent in
the GPU in the LDSBankConflict counter.

3 Future Work

Currently, we are working on expanding the counter sets and inves-
tigating the counter usage for automatic bottleneck detection.

AMD, and combinations thereof, and ATI Radeon are trademarks of
Advanced Micro Devices, Inc. The names of actual products mentioned
herein may be the trademarks of their respective owners.


